合肥生活安徽新闻合肥交通合肥房产生活服务合肥教育合肥招聘合肥旅游文化艺术合肥美食合肥地图合肥社保合肥医院企业服务合肥法律

代写AI3013编程、代做Python设计程序
代写AI3013编程、代做Python设计程序

时间:2025-04-09  来源:合肥网hfw.cc  作者:hfw.cc 我要纠错



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

请加QQ:99515681  邮箱:99515681@qq.com   WX:codinghelp

扫一扫在手机打开当前页
  • 上一篇:代写APSC 142、代做C/C++程序设计
  • 下一篇:DTS101TC代做、代写Python语言程序
  • 无相关信息
    合肥生活资讯

    合肥图文信息
    出评 开团工具
    出评 开团工具
    挖掘机滤芯提升发动机性能
    挖掘机滤芯提升发动机性能
    戴纳斯帝壁挂炉全国售后服务电话24小时官网400(全国服务热线)
    戴纳斯帝壁挂炉全国售后服务电话24小时官网
    菲斯曼壁挂炉全国统一400售后维修服务电话24小时服务热线
    菲斯曼壁挂炉全国统一400售后维修服务电话2
    美的热水器售后服务技术咨询电话全国24小时客服热线
    美的热水器售后服务技术咨询电话全国24小时
    海信罗马假日洗衣机亮相AWE  复古美学与现代科技完美结合
    海信罗马假日洗衣机亮相AWE 复古美学与现代
    合肥机场巴士4号线
    合肥机场巴士4号线
    合肥机场巴士3号线
    合肥机场巴士3号线
  • 上海厂房出租 短信验证码 酒店vi设计