合肥生活安徽新闻合肥交通合肥房产生活服务合肥教育合肥招聘合肥旅游文化艺术合肥美食合肥地图合肥社保合肥医院企业服务合肥法律

 COMP338代做、python编程语言代写
 COMP338代做、python编程语言代写

时间:2024-10-24  来源:合肥网hfw.cc  作者:hfw.cc 我要纠错



COMP338 – Computer Vision – Assignment 1 
 
o This assignment is worth 15% of the total mark for COMP338 
 
o Students will do the assignment individually. 
 
Submission Instructions 
 
o Send all solutions as a single PDF document containing your answers, results, and 
discussion of the results. Attach the source code for the programming problems as 
separate files. (One PDF doc, one source code file {python or Jupyter Notebook 
(Ipython)}) 
 
o Each student will make a single submission to the Canvas system. 
 
o The deadline for this assignment 14/11/2024, 5:00pm 
 
o Penalties for late submission apply in accordance with departmental policy as set 
out in the student handbook, which can be found at 
http://intranet.csc.liv.ac.uk/student/msc-handbook.pdf 
 and the University Code of Practice on Assessment, found at 
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-onassessment/code_of_practice_on_assessment.pdf
Task 1. (50 marks) Canny Edge Detection 
 
OpenCV provides a function canny() to get the edge detection result with an image (you can 
use any grey image). Please do the following: 
 
 1. (25 marks) Reimplement the canny operation without using the built-in canny() 
function (with some explanations of the code). 
2. (10 marks) Test and visualize your implementation results. (with different filters, 
different thresholds and others) 
3. (15 marks) Discuss the difference between your implementation, your results 
compared with the OpenCV implementation. (Compare the numerical results and the 
running time and others.) 
 
Note: 
- It is acceptable if the implementations do not match exactly; you will need to analyze 
the differences between your implementation and the Canny method. Including your 
own reflections in the report will result in additional bonus points. However, it is 
mandatory that you reimplement the function based on your understanding. 
 
Task 2. (50 marks) Feature Extraction 
 
In Lecture 11 and Lab 04 - SIFT & Feature Matching, we have discussed the SIFT feature. 
In practice, there are several other feature extraction methods such as SURF or ORB. In this 
task, we will do extra reading, implementation, and compare SIFT vs. SURF vs. ORB. 
 
Papers to read: 
- Bay et al., SURF: Speeded Up Robust Features, ECCV 2006 
- Rublee et al., ORB: An efficient alternative to SIFT or SURF, ICCV 2011. 
 
Good tutorials: 
- https://docs.opencv.org/4.x/df/dd2/tutorial_py_surf_intro.html 
- https://docs.opencv.org/4.x/d1/d89/tutorial_py_orb.html 
 
 1. (20 marks) Read the SURF and ORB papers and tutorials, summarize your 
understanding. Compare the differences among SIFT vs. SURF vs. ORB. 
2. (10 marks) Given two images (victoria.jpg and victoria2.jpg – both available on 
Canvas), call OpenCV functions to extract ORB keypoints. You can use the built-in 
functions from OpenCV. Visualize the detected keypoints. 
3. (20 marks) Given two images (victoria.jpg and victoria2.jpg), extract the descriptors 
using SIFT and ORB. Perform keypoint matching using Brute-Force Matcher. From 
the results, which method do you think perform the best? Justify your answer. 
 Note: 
- You can also choose the images yourself, as long as they are of the same subject taken 
from different perspectives. You may directly use greyscale images. 
- Including your own reflections in the report will result in additional bonus points. 
However, it is mandatory that you reimplement the function based on your 
understanding. 
 
请加QQ:99515681  邮箱:99515681@qq.com   WX:codinghelp








 

扫一扫在手机打开当前页
  • 上一篇:代写SD6502、代做C++程序语言
  • 下一篇:代写JC4002、代做c/c++程序语言
  • 无相关信息
    合肥生活资讯

    合肥图文信息
    新能源捕鱼一体电鱼竿好用吗
    新能源捕鱼一体电鱼竿好用吗
    海信罗马假日洗衣机亮相AWE  复古美学与现代科技完美结合
    海信罗马假日洗衣机亮相AWE 复古美学与现代
    合肥机场巴士4号线
    合肥机场巴士4号线
    合肥机场巴士3号线
    合肥机场巴士3号线
    合肥机场巴士2号线
    合肥机场巴士2号线
    合肥机场巴士1号线
    合肥机场巴士1号线
    合肥轨道交通线路图
    合肥轨道交通线路图
    合肥地铁5号线 运营时刻表
    合肥地铁5号线 运营时刻表
  • 币安app官网下载 短信验证码

    关于我们 | 打赏支持 | 广告服务 | 联系我们 | 网站地图 | 免责声明 | 帮助中心 | 友情链接 |

    Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥网 版权所有
    ICP备06013414号-3 公安备 42010502001045