合肥生活安徽新闻合肥交通合肥房产生活服务合肥教育合肥招聘合肥旅游文化艺术合肥美食合肥地图合肥社保合肥医院企业服务合肥法律

MAST30027代做、Java/C++设计程序代写
MAST30027代做、Java/C++设计程序代写

时间:2024-08-30  来源:合肥网hfw.cc  作者:hfw.cc 我要纠错



MAST30027: Modern Applied Statistics
Assignment 2, 2024.
Due: 11:59pm Monday September 2nd
 This assignment is worth 8% of your total mark.
 To get full marks, show your working including 1) R commands and outputs you use, 2)
mathematics derivation, and 3) rigorous explanation why you reach conclusions or answers.
If you just provide final answers, you will get zero mark.
 The assignment you hand in must be typed (except for math formulas), and be submitted
using LMS as a single PDF document only (no other formats allowed). For math formulas,
you can take a picture of them. Your answers must be clearly numbered and in the same
order as the assignment questions.
 The LMS will not accept late submissions. It is your responsibility to ensure that your
assignments are submitted correctly and on time, and problems with online submissions are
not a valid excuse for submitting a late or incorrect version of an assignment.
 We will mark a selected set of problems. We will select problems worth ≥ 50% of the full
marks listed.
 If you need an extension, please contact the lecturer before the due date with appropriate
justification and supporting documents. Late assignments will only be accepted if you have
obtained an extension from the lecturer before the due date. To ensure that the lecturer
responds to your extension request email before the due date, please contact 24h before the
due date. Under no circumstances an assignment will be marked if solutions for it have been
released.
 Also, please read the “Assessments” section in “Subject Overview” page of the LMS.
1. The inverse Gaussian distribution has p.d.f.
f(x;μ, λ) =
(
λ
2pix3
)1/2
exp
(?λ(x? μ)2
2μ2x
)
for x > 0, where μ > 0 and λ > 0.
(a) (5 marks) Show that the inverse Gaussian distribution is an exponential family.
(b) (5 marks) Obtain the canonical link and the variance function.
[hint: you could consider θ = ?1/μ2.]
2. (30 marks)
Note: There is no unique answer for this problem. The report for this prob-
lem should be typed. Hand-written report or report including screen-captured
R codes or figures won’t be marked. An example report written by a student
previous year has been posted on LMS.
1
Data: The dataset comes from the Fiji Fertility Survey and shows data on the number of
children ever born to married women of the Indian race classified by duration since their
first marriage (grouped in six categories), type of place of residence (Suva, urban, and rural),
and educational level (classified in four categories: none, lower primary, upper primary, and
secondary or higher). The data can be found in the file assignment2 prob2.txt. The
dataset has 70 rows representing 70 groups of families. Each row has entries for:
 duration: marriage duration of mothers in each group (years),
 residence: residence of families in each group (Suva, urban, rural),
 education: education of mothers in each group (none, lower primary, upper primary,
secondary+),
 nChildren: number of children ever born in each group (e.g. 4), and
 nMother: number of mothers in each group (e.g. 8).
We can summarise data as a table as follows.
> data <- read.table(file ="assignment2_prob2.txt", header=TRUE)
> data$duration <- factor(data$duration, levels=c("0-4","5-9","10-14","15-19","20-24","25-29")
> , ordered=TRUE)
> data$residence <- factor(data$residence, levels=c("Suva", "urban", "rural"))
> data$education <- factor(data$education, levels=c("none", "lower", "upper", "sec+"))
> ftable(xtabs(cbind(nChildren,nMother) ~ duration + residence + education, data))
Problem: We want to determine which factors (duration, residence, education) and two-
way interactions are related to the number of children per woman (fertility rate). The
observed number of children ever born in each group (nChildren) depends on the number of
mothers (nMother) in each group. We must take account of the difference in the number of
mothers (hint: one of the lab problems shows how to handle this issue). Write a report on
the analysis that should summarise the substantive conclusions and include the highlights
of your analysis: for example, data visualisation, choice of model (e.g., Poisson, binomial,
gamma, etc), model fitting and model selection (e.g., using AIC), diagnostic, check for
overdispersion if necessary, and summary/interpretation of your final model.
At each step of your analysis, you should write why you do that and your interpreta-
tion/conclusion. For example, “I make an interaction plot to see whether there are in-
teractions between X and Y”, show a plot, and “It seems that there are some interaction
between X and Y”.

请加QQ:99515681  邮箱:99515681@qq.com   WX:codinghelp




 

扫一扫在手机打开当前页
  • 上一篇:代写COMP30026、C++设计程序代做
  • 下一篇:COMP30026代做、C/C++设计程序代写
  • 无相关信息
    合肥生活资讯

    合肥图文信息
    新能源捕鱼一体电鱼竿好用吗
    新能源捕鱼一体电鱼竿好用吗
    海信罗马假日洗衣机亮相AWE  复古美学与现代科技完美结合
    海信罗马假日洗衣机亮相AWE 复古美学与现代
    合肥机场巴士4号线
    合肥机场巴士4号线
    合肥机场巴士3号线
    合肥机场巴士3号线
    合肥机场巴士2号线
    合肥机场巴士2号线
    合肥机场巴士1号线
    合肥机场巴士1号线
    合肥轨道交通线路图
    合肥轨道交通线路图
    合肥地铁5号线 运营时刻表
    合肥地铁5号线 运营时刻表
  • 币安app官网下载 短信验证码

    关于我们 | 打赏支持 | 广告服务 | 联系我们 | 网站地图 | 免责声明 | 帮助中心 | 友情链接 |

    Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥网 版权所有
    ICP备06013414号-3 公安备 42010502001045